Abelsche Gruppen


0

Hi,

ich soll in einer Aufgabe nachweisen, dass es eine abelsche Gruppe ist. Das Prinzip ist mir klar, aber ich erkenne einfach nicht, was hier die Operation sein soll? Addition, Subtraktion, Multiplikation?

Hier die Aufgabe:

Zeige, dass die Menge G = (R x R\ {(0, 0)} mit der zweistelligen operation

(a,b) . (a'b') := (aa' - bb', ab' + ba')   

für (a, b), (a', b') € G eine Abelsche Gruppe ist.

Der Punkt soll ein Mal sein, ich bin mehrmals gescheitert den korrekt zu implementieren... auch hier wäre ich für Hilfe dankbar :D

 

 

gefragt vor 1 Woche, 4 Tage
j
jens1,
Student, Punkte: 10
 
Kommentar schreiben Diese Frage melden
1 Antwort
0

Hallo,


die Operation ist eine Mischung aus Addition, Subtraktion und Multiplikation.


Gucken wir uns mal die Assoziativität an. 


$$ ( (a,b) \cdot (a',b')) \cdot (a'',b'')  = (a,b) \cdot ((a',b') \cdot (a'',b'') ) $$


Wir berechnen zuerst die linke Seite


$$ ((a,b) \cdot (a',b')) \cdot (a'',b'') \\ = (aa'-bb',ab'+ba') \cdot (a'',b'') \\ = ((aa'-bb')a'' - (ab' +ba')b'' , (aa'-bb')b'' + (ab'+ba')a'' ) $$


Nun kannst du auf die gleiche Weise die rechte Seite berechnen und zeigen das diese gleich sind. 


Mit der Kommutativität gehst du ähnlich um.


Für das neutrale Element \(e\) bestimme


$$ (e_1 , e_2) \cdot (a,b) = (e_1a-e_2b,e_1b+e_2a) = (a,b) $$


Wenn du das neutrale Element hast, kannst du auf ähnliche Weise das Inverse bestimmen. Versuch dich mal. Wenn noch etwas unklar ist melde dich gerne nochmal.


Grüße Christian

geantwortet vor 1 Woche, 3 Tage
christian strack, verified
Sonstiger Berufsstatus, Punkte: 16628
 

Super Erklärung, danke! Die Operation sagt also aus, wie ich in dieser Gruppe zwei Tupel multipliziere, eben wie in dem Term auf der rechten Seite mit Addition und Subtraktion?

Dann zeige ich die Eigenschaften für die linke Seite und bin fertig? Oder muss ich Assoziativität etc. auch noch für (aa' - bb', ab' + ba') zeigen?
  -   jens1, kommentiert vor 1 Woche

Das freut mich zu hören, sehr gerne :)
Ich finde anstatt Operation das Wort Verknüpfung schöner. Eine Gruppe besteht aus einer Menge und eine Struktur wie man diese Elemente miteinander verknüpft. Wie diese Verknüpfung aussieht ist erstmal komplett egal, hauptsache sie erfüllt die 3 Axiome. Zum Beispiel kann man auch die Menge von bijektiven Funktionen nehmen und als Verknüpfung die Komposition von Funktionen nutzen. Dann verknüpfen wir zwei Funktionen, indem wir die eine in die andere einsetzen.

Ich bin mir nicht ganz sicher was du mit der linken Seite meinst?
  -   christian strack, verified kommentiert vor 1 Woche

Die linke Seite der Operation, du hast ja oben vorgemacht, wie man (a,b) . (a'b') untersucht. Muss ich das auch für (aa' - bb', ab' + ba') machen und die Ergebnisse vergleichen?   -   jens1, kommentiert vor 5 Tage, 22 Stunden

Nein das ist ja die Definition von \( (a,b) \cdot (a',b') \).
Eine Gruppe besteht wie gesagt aus einer Menge und einer Verknüpfung. Die Gleichung
$$ (a,b) \cdot (a',b') = (aa'-bb',ab'+ba') $$
beschreibt uns nur auf welche Art wir die Elemente in unserer Gruppe verknüpfen. Sowie man zum Beispiel die Multiplikation durch die Addition definieren kann.
Dann zeigen wir das wir eine Gruppe haben, indem wir zeigen, das wenn wir Elemente auf diese Art verknüpfen, auch die Gruppenaxiome gelten.
Ich habe auch nicht komplett gezeigt das es eine Gruppe ist, ich habe dir nur die Ansätze gegeben. Schaffst du es denn die Axiome zu Ende zu beweisen?
  -   christian strack, verified kommentiert vor 5 Tage, 19 Stunden

Ja, mit deinen Ansätzen kein Problem, nur auf diese Ansätze zu kommen hatte sich mir nicht erschlossen. Jetzt ist aber alles klar :)   -   jens1, kommentiert vor 2 Tage, 18 Stunden

Den richtig Ansatz zu finden bedarf leider einfach Übung. Mit der Zeit wird es immer einleuchtender was genau gefragt ist und was gegeben ist. In fremden Sprachen muss man auch viele Vokablen und Grammtik lernen, bis man selbst die ersten anspruchsvollen Sätze versteht.
Einfach dran bleiben und nicht entmutigen lassen. Für den Rest melde dich immer gerne hier im Forum :)

Als Tipp, auch wenn es viellecht anfangs etwas abwägig klingt, hilft es hier im Forum mit an anderen Fragen zu arbeiten. Ich habe hier im Forum auch erst viele Zusammenhänge richtig verstanden, weil ich mich mit den Fragestellern hinsetze und erstmal meine Ideen präsentiere und dann mit ihr/ihm darüber diskutiere.
  -   christian strack, verified kommentiert vor 19 Stunden, 2 Minuten
Kommentar schreiben Diese Antwort melden