Die geometrische Verteilung


0
Jo Leute, ich muss in einigen Wochen eine Präsentationsleistung über ein Thema halten was mir selbst neu ist. Geometrische Verteilung Die Aufgabenstellung lautet:
  1. Beschreiben Sie sinnvolle Anwendungsgebiete der geometrischen Verteilung anhand selbst gewählter Beispiele.
  2. Erläutern Sie die folgende Aufgabe: Eine Firma produziert Lichterketten. Aus einer Statistik geht hervor, dass nach einem Weihnachtsfest (einem Jahr) ein Zehntel der noch funktionierenden Lichterketten einer Serie versagen. a) Wie viel Prozent der Lichterketten halten länger aös drei Weihnachtsfeste? b) Nach wie vielen Weihnachtsfesten ist etwa die Hälfte der Lichterketten einer Serie defekt?
  3. Erläutern Sie den Zusammenhang zur Binomialverteilung
Freue mich über jegliche Hilfe! <3 Lieben Gruß Sam

 

gefragt vor 10 Monate, 1 Woche
s
samderboy,
Punkte: 7
 
Kommentar schreiben Diese Frage melden
3 Antworten
1

Die geometrische Verteilung leitet sich aus der Idee des Bernouli Experimentes her. Es gibt im Bernouli-Experiment nur zwei mögliche Ausgänge. Das Eintreten eines Ereignisses oder das nicht eintreten.

Bei der geometrischen Verteilung nutzt man die selbe Grundlage, nur überlegt man sich wie hoch die Wahrscheinlichkeit ist, dass das Ereignis nach einer bestimmten Anzahl von Versuchen eintritt.

Somit hat die geometrische Verteilung nur einen Parameter, nämlich die Wahrscheinlichkeit p. p steht für die Wahrscheinlichkeit dass das Ereignis eintritt und p-1 das es nicht eintritt ( Manchmal wird für q=p-1 genutzt).

Die geometrische Verteilung kann auf 2 Arten definiert werden, deshalb unterscheiden sich vielleicht die Quellen.

    1. Das Ereignis tritt nach n Versuchen auf
    2. Das Ereignis tritt nach n Misserfolgen auf

Bei der ersten Variante gilt für die Wahrscheinlichkeit

\( P(n)= p \cdot (1-p)^{n-1} \)

Du kannst dir an einem Baumdiagramm leicht veranschaulichen warum diese Wahrscheinlichkeit gilt. Du hast zuerst n-1 Misserfolge und beim n-ten Versuch tritt das Ereignis ein.

Für die zweite Variante gilt

\( P(n)= p \cdot (1-p)^{n} \)

Hier tritt der Erfolg ein nachdem man n Misserfolge hatte. Also hat man erst beim n+1 mal einen Erfolg.

Ich werde im folgenden die erste Variante nehmen.

Kommen wir zur Verteilungsfunktion.

Die Verteilungsfunktion ist definiert über

\( F(X) = \sum P(x_i) \)

Angewandt auf unsere Wahrscheinlichkeitsfunktion erhalten wir

\( F(X \leq n) = p \sum_{i=1}^n (1-p)^{i-1} \)

Kommen wir jetzt zu deiner Aufgabe.

Wir betrachten die Aufgabe folgendermaßen. Wir wollen wissen wann alle Glühbirnen kaputt sind. Da im Schnitt ein Zehntel der Lampen kaputt sind, belegen wir die Wahrscheinlichkeit dass das Ereignis "Alle Glühbirnen sind kaputt" eintritt mit p=0,1. Somit ist (1-p)=0,9 die Wahrscheinlichkeit dass Ereignis nicht eintritt.

Nun ist als erstes gefragt, wie viele Glühbirnen nach 3 Jahren kaputt sind. Wir rechnen also

\( F(X \leq 3) = 0,1 \cdot \sum_{i=1}^3 0,9^{i-1} = 0,1 \cdot (1+0,9+0,81) = 0,271 \)

Es sind nach dem dritten Jahr also zu 0,271% alle Lampen kaputt. Würde man das auf beispielsweise 1000 Lampen beziehen, würde das bedeuten das im Schnitt 271 Lampen kaputt sind nach 3 Jahren.

Klappt es jetzt mit dem zweiten Teil der Aufgabe?

Sind noch Fragen offen?

Grüße Christian

 

geantwortet vor 10 Monate, 1 Woche
christian strack, verified
Sonstiger Berufsstatus, Punkte: 14508
 

Besten Dank, Ihr/Du seid wahre Retter!
Lieben Gruß
Sam
  -   samderboy, kommentiert vor 10 Monate, 1 Woche

Das freut mich zu hören. Sollten noch Fragen aufkommen melde dich.

Grüße Christian
  -   christian strack, verified kommentiert vor 10 Monate, 1 Woche

Habe zurzeit Schwierigkeiten beim zweiten Teil der Aufgabe. Kann mir vorstellen, dass man da einfach umstellen muss, jedoch weiß ich nicht wie ich das dann genau mache.

Lieben Gruß Sam
  -   samderboy, kommentiert vor 10 Monate

Das ist schön erklärt, und in dieser Form kannte ich das auch noch nicht. Allerdings kenne ich etwas, was damit zu tun hat: das geometrische Mittel. Als ich die Aufgabenstuung gelesen habe, habe ich zuerst gedacht, es ginge darum. Das geometrische Mittel ist wie folgt definiert:

$$\mathring{x}=\sqrt[n]{\prod_{i=1}^{n}x_{i}} \tag{1}$$

Das funktioniert hier aber nicht, ud zwar aus einem sehr einfachen Grund: Wenn ich wissen will, wieviele Lampen am Ende des ersten, des zweiten und des dritten Jahres noch übrig sind, dann habe ich in jedem der Jahre den Faktor 0,9. Das geometrische Mittel würde jetzt den konstanten Faktor ermitteln, mit dem ich zum Endergebnis nach drei Jahren komme. Der ist aber 0,9, was ich vorher schon wusste:

$$\mathring{x}=\sqrt[3]{0,9\cdot0,9\cdot0,9}=\sqrt[3]{0,9^{3}}=0,9 \tag{2}$$

Etwas anderes lässt sich aber sehen: um zu ermitteln, wie groß der Anteil der Lampen ist, die am Endes des dritten Jahres noch übrig sind, brauche ich nur folgendes zu rechnen:

$$0,9\cdot0,9\cdot0,9=0,9^{3}=0,729 \tag{3}$$

Das bedeutet: wenn am Anfang 1000 Lampen vorhanden waren, dann sind nach drei Jahren noch 729 funktionsfähig. Christian hatte umgekehrt die Anzahl der Lampen berechnet, die nach drei Jahren kaputt sind, nämlich 271 von 1000. 729 Lampen + 271 Lampen = 1000 Lampen.

Die zweite Frage ist, nach wieviel Jahren nur noch die Hälfte aller Lampen übrig ist, wenn per anno konstant 10 Prozent kaputt gehen. Wei es hier einen konstanten Faktor gibt, nämlich 0,9 per anno, kann die Frage so formalisiert werden:

$$0,9^{x}=0,5 \tag{4}$$

Dazu ein Hinweis: wenn \(2^{3}=8\) ist, dann ist \(\log_{2}8=3\).

Viele Grüße
jake2042
  -   jake2042, verified kommentiert vor 1 Monat, 2 Wochen

Errata

Aufgabenstuung
Aufgabenstellung

Das funktioniert hier aber nicht, ud zwar aus einem sehr einfachen Grund: [...]
Das funktioniert hier aber nicht, und zwar aus einem sehr einfachen Grund: [...]

Wei es hier einen konstanten Faktor gibt, [...]
Weil es hier einen konstanten Faktor gibt, [...]
  -   jake2042, verified kommentiert vor 1 Monat, 2 Wochen
Kommentar schreiben Diese Antwort melden
0

Hallo,

was ist denn deine Frage? Was ist dir unklar?

Ich denke du kannst verstehen das hier keiner die ganze Präsentation machen will. ;)

Ich finde hier ist die geometrische Verteilung sehr schön erklärt.

Wenn sich explizite Fragen oder Probleme auftun melde dich nochmal.

Grüße Christian

geantwortet vor 10 Monate, 1 Woche
christian strack, verified
Sonstiger Berufsstatus, Punkte: 14508
 

Ja ich hätte gern das Grundprinzip der Geometrischen Verteilung verstanden (am besten anhand der Aufgabe). Hab viel recherchiert (die vorgeschlagene Seite hab ich mir auch durchgelesen) aber die Quellen unterscheiden sich sogar manchmal von einander und gebracht haben sie mir auch nichts.   -   samderboy, kommentiert vor 10 Monate, 1 Woche
Kommentar schreiben Diese Antwort melden
0
Ja ich hätte gern das Grundprinzip der Geometrischen Verteilung verstanden (am besten anhand der Aufgabe). Hab viel recherchiert (die vorgeschlagene Seite hab ich mir auch durchgelesen) aber die Quellen unterscheiden sich sogar manchmal von einander und gebracht haben sie mir auch nichts.
geantwortet vor 10 Monate, 1 Woche
s
samderboy,
Punkte: 7
 
Kommentar schreiben Diese Antwort melden