Flächenberechnung mit Stammfunktion


0
Hallo, ich benötige dringend Hilfe.. Ich habe leider immer noch nicht verstanden, wie ich eine Flächenberechnung mit einer Stammfunktion mache... Kann mir da nochmal jmd helfen? Ich weiß, die Frage ist ziemlich umfassend, ich  wäre jedoch sehr, sehr dankbar:)) LG
lindaanika, gefragt vor 2 Monate, 1 Woche
 
Kommentar schreiben
1 Antworten
0

Hallo,
du suchst den Flächeninhalt zwischen entweder https://matheguru.com/images/integral_flaeche_zwischen_zwei_funktionen_06.png">zwei Funktionen oder einer https://www.mathelounge.de/?qa=blob&qa_blobid=704618583876520913">Funktion und der x-Achse in einem Intervall. Du könntest dich jetzt z.B. durch https://www.dom-gymnasium.de/mathpage/12/Integration/streifen8.png">Abzählen annähern, würdest dabei jedoch kein exaktes Resultat erhalten. Daher gibt es die Integralrechnung. Angenommen, wir wollen den Flächeninhalt https://i.imgur.com/cLOa84I.png">dieser Funktion ( \(f(x)=-x^2+15\) ) bestimmen, so bilden wir das Integral von (linker Schnittpunkt mit der x-Achse) bis (rechter Schnittpunkt mit der x-Achse). Wenn die SP nicht bekannt sind, musst die Funktion zuerst nullsetzen. Somit ergibt sich als exaktes Resultat:

\(\int_{-\sqrt{15}}^{\sqrt{15}}-x^2+15\:dx= 20\sqrt{15} \approx 77.46\,\textrm{FE}\) . Solltest du keinen Taschenrechner zur Hand haben, musst du die Funktion integrieren (Stammfunktion) bilden und dann die obere Grenze einsetzen und von diesem die untere subtrahieren. Das würde so aussehen:

\(F(x)=15x-\dfrac{x^3}{3}\) Nun die Integrationsgrenzen anwenden: \(F(\sqrt{15})-F(-\sqrt{15})=20\sqrt{15}\)

maccheroni_konstante, beantwortet vor 2 Monate, 1 Woche
 
Kommentar schreiben