Quadratische Abstände


0

Hallo. 

Wir verzweifeln hier seit Tagen an einer altklausur Frage. Wir wissen nicht im Ansatz wie wir das angehen sollen  Hier die Aufgabe:

Gegeben seien die Punkte P1(-1,3) P2(0,1) P3(1,4) P(2,8) 

sowie die Funktion \(y(x) =ax^4+bx^2  \) mit festen a, b element reelle Z.

Zeigen Sie, dass die Summe der quadratischen Abstände der Punkte P1,..., P4 zu der Funktion y durch den Ausdruck :

\( f(a, b) =6(43a^2+22ab-45a+3b^2-13b+15) \) 

gegeben ist. 

 

Also dass man wahrscheinlich partiell ableiten muss wissen wir. Bekommen wir auch hin. Aber ein genereller Lösungs Ansatz fehlt uns komplett  Vielleicht kann uns ja jemand helfen  Viele Dank schonmal im Vorraus :) 

gefragt vor 2 Monate, 1 Woche
u
 
Kommentar schreiben
1 Antwort
0

Hallo,

ein wirkliches Verfahren zur Bestimmung dieser Gleichung fällt mir gerade nicht ein. Meine Idee zur Bestimmung wäre folgende:

Es wird nach der Summe der quadratischen Abstände gefragt 

\( \sum_{i=1}^4 d_i^2 \) mit \( d_i^2 = (x-x_i)^2 + (ax^4+bx^2 -c_i)^2 \). Dabei gilt für \( P_i(x_i|c_i) \)

Allgemein ergibt \( (ax^4+bx^2 -c)^2 = a^2x^8+2abx^6 -2acx^4 + b^2x^4-2bcx^2+c^2 \)

Summieren wir dies für alle Punkte auf, erhalten wir
\( 4a^2x^8+8abx^6 -2ax^4(c_1+c_2+c_3+c_4) + 4b^2x^4-2bx^2(c_1+c_2+c_3+c_4)+(c_1^2 +c_2^2 + c_3^2 + c_4^2) \)

Es gilt:
\( c_1+c_2+c_3+c_4 = 16 \)
\( c_1^2 +c_2^2 + c_3^2 + c_4^2 = 90 \)

Wir erhalten also 
\( 4a^2x^8+8abx^6 -32ax^4 + 4b^2x^4-32bx^2+ 90 \)

Dazu müssen wir nun noch die Ergebnisse für \( (x-x_i)^2 \) addieren. Das Problem was ich hier sehe ist, das es kein \( x \) gibt, das zu deiner Gleichung führt. 

Ich werde mal noch etwas weiter probieren. Bist du sicher das die Aufgabe so richtig abgetippt ist?

Grüße Christian

geantwortet vor 2 Monate, 1 Woche
christianteam,
Sonstiger Berufsstatus, 10518
 

Hallo Christian. 


Danke schonmal für die Antwort.


Ja die Aufgabe kam genau so in der Klausur drann ... (Wirtschaftsmathe 2)


Wäre schön wenn du es noch weiter probierst. Danke .


Grüße 

  -   Umberto, kommentiert vor 2 Monate, 1 Woche

Hallo,


ich habe noch ein paar Sachen probiert komme aber irgendwie auf kein vernünftiges Ergebnis. 


Wenn es nicht das eine \( x \) gibt, das die Gleichung löst, dann müsstest du für jeden quadratischen Abstand \( d_i^2 \) das Minimum bestimmen, damit du weißt für welches x der Abstand minimal ist. 


Da wir aber für die \( d_i^2 \) Polynomfunktionen 8ten Grades haben mit 2 Parametern wird das schwierig die die verschiedenen \( x_i\) zu bestimmen, für die die Abstände minimal werden.


Ich weiß nicht ob es ein Verfahren gibt ob man das ganze einfacher bestimmen kann. Ich würde da am besten wirklich nochmal bei einem Übungsleiter oder dem Professor nachfragen. 


Grüße Christian

  -   Christianteam, kommentiert vor 2 Monate
Kommentar schreiben

Deine Antwort
Hinweis: So gibst du Formeln ein.