Abbildung durch Linksmultiplikation gegeben.


0

Wie kann ich da Kern und Bild bestimmen oder bzw. Die Basen angeben, wenn ich ja nicht weiss in Welchem Raum ich mich befinde?

 

oder sehe ich es nur nicht?

 

Vielen Dank

Grüsse Christian

 

gefragt vor 8 Monate
c
chrugi,
Student, Punkte: 43
 
Kommentar schreiben Diese Frage melden
1 Antwort
0

Hallo,

das ist nicht wichtig zur Berechnung. 

Zuerst zum Kern. Im Kern befinden sich alle Elemente, die auf den Nullvektor abbilden. Du bestimmst also:

\( \begin{pmatrix} 1 & 2 & 0 & -1 & 5 \\ 2 & 0 & 2 & 0 & 1 \\ 1 & 1 & -1 & 3 & 2 \\ 0 & 3 & -3 & 2 & 6 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \)

Die linke Seite der Gleichung kannst du allgemein bestimmen. Daraus ergeben sich dann 5 Gleichungen, aus denen du die \( x_i \) bestimmen kannst, für die der Nullvektor angenommen wird. 
Für jedes frei wählbare \( x_i \) erhälst du dann einen lin. unabhängigen Basisvektor des Kerns. 

Zum Bild. Im Bild finden sich alle Vektoren, die tatsächlich von der Abbildung angenommen werden. Also bestimmen wir wieder die linke Seite der obigen Gleichung. Den Lösungsvektor kannst du sofort als Linearkombination schreiben und erhälst so deine Basis des Bildes.

Grüße Christian

geantwortet vor 8 Monate
christian strack, verified
Sonstiger Berufsstatus, Punkte: 14903
 

Hallo Christian


Vielen Dank für die Antwort.


Könnte es aber nicht auch sein dass man sich im 3x3 Matrizenraum befindet und nicht im R^5?


Dann bekäme ja man auch eine 3x3 Matrix, aber die Lösung bzw. der Lösungsraum wäre ja ein ganz anderer...oder sehe ich das falsch?


 


Grüsse Christian

  -   chrugi, kommentiert vor 8 Monate

Ja das hast du wohl Recht das könnte er sein. Aber in der Aufgabe geht es nur um das Verständis des Kerns und des Bildes. Wenn nichts weiter gegeben ist, dann wird von einer Teilmenge des \( \mathbb{R}^n \) ausgegangen. 


Aber prinzipiell hast du schon recht, die Aufgabe ist dadurch nicht ganz eindeutig.


Grüße Christian

  -   christian strack, verified kommentiert vor 8 Monate

Ok vielen Dank :)

  -   chrugi, kommentiert vor 8 Monate
Kommentar schreiben Diese Antwort melden