Ableitung mit Hilfe des Differentialquotienten bilden.


1

\( f(x)=x^3-5x \)

Wäre wirklich klasse wenn das jemand erklären könnte. Zumindest den Rechenweg darstellen.

Kann man das mit der h-Methode machen?

LG

 

gefragt vor 6 Monate, 1 Woche
d
duuustin,
Student, Punkte: 60
 
Kommentar schreiben Diese Frage melden
1 Antwort
1

 

Hallo,

ja, sowohl mit der h-Methode, also auch mit der x_0 Methode machbar.

\(\lim\limits_{h \to 0}\dfrac{f(x+h)-f(x)}{h}=\lim\limits_{h \to 0}\dfrac{((x+h)^3-5(x+h))-(x^3-5x)}{h}\\
=\lim\limits_{h \to 0}\dfrac{(x+h)^3-5x-5h-x^3+5x}{h}\\
=\lim\limits_{h \to 0}\dfrac{3x^2h+3xh^2+h^3-5h}{h}\\
=\lim\limits_{h \to 0}(3x^2+3hx+h^2-5)\\
=3x^2+3\cdot 0\cdot x+0^2-5
\\= 3x^2-5\)

 

geantwortet vor 6 Monate, 1 Woche
m
maccheroni_konstante, verified
Sonstiger Berufsstatus, Punkte: 12571
 

Klasse! Vielen Dank für die Mühe! LG

  -   duuustin, kommentiert vor 6 Monate, 1 Woche

Nochmal verbessert. Jetzt stimmts.

  -   maccheroni_konstante, verified kommentiert vor 6 Monate, 1 Woche

Welche Binomische-Formel ist das? .. Die Erste? 


Kannst du den 2 zum 3 Schritt mal ausführlich schreiben? 


Das wäre sehr nett. 


LG und vielen Dank nochmal.

  -   duuustin, kommentiert vor 6 Monate, 1 Woche

 


Ja, die erste.


\((x+h)^3=h^3 + 3 h^2 x + 3 h x^2 + x^3\)


Die \(x^3\) entfällt aufgrund der \(-x^3\), genauso wie die \(5x\) und \(-5x\).


Übrig bleibt: \(h^3 + 3 h^2 x + 3 h x^2 -5h\)


 

  -   maccheroni_konstante, verified kommentiert vor 6 Monate, 1 Woche

Vielen Dank nochmal! Hat nun alles geklappt! :)

  -   duuustin, kommentiert vor 6 Monate, 1 Woche
Kommentar schreiben Diese Antwort melden