Satz vom Nullprodukt, wie würde ich a herausfinden


0

Hi gehen wir davon aus ich habe die Punkte 2/0, 3/0 & 0/0

 

Wäre ja eine Funktion 3 Grades. Die Null produkt Form wäre ja

 

(x-2)(x-3)(x-0)

Wie bekomme ich aber am ende a raus?

 

y= a(x-2)(x-3)(x-0)

 

Wenn ich das ausrechnen würde wäre das ja

 

y=a(x^3-5x^2+6x)

 

Wie bekomme ich jetzt a raus?

 

Wenn ich da jetzt einen Punkt einfügen würde z.B 2/0 dann wäre es ja

 

0=a(8-20+12)

und das wäre ja a=0

 

Was ja nicht sien kann doer

 

 

gefragt vor 6 Monate
k
kiro9,
Punkte: 20
 

Immernoch: durch drei Punkte ist die Funktion dritten Grades nicht eindeutig bestimmt! Du brauchst vier Bedinungen!


In deiner letzten Gleichung, wo du den Satz über das Nullprodukt anwendest, bekommst du ein beliebiges a raus, da der andere Faktor ja immer 0 ist.

  -   jojoliese, kommentiert vor 6 Monate

Hättest du eine vierte Bedinung könntest du a dann bestimmen. Sonst ist es beliebig und du hast eine Menge von Funktionen dritten Grades, die durch diese Punkte geht.

  -   jojoliese, kommentiert vor 6 Monate

Danke dir

  -   kiro9, kommentiert vor 6 Monate
Kommentar schreiben Diese Frage melden
1 Antwort
0

"Wäre ja eine Funktion 3 Grades."

Nein, das sind einfach nur 3 Punkte.

"Wie bekomme ich aber am ende a raus?"

Annahme: Es handelt sich um eine quadratische Funktion, dann setzt du die Komponenten der Punkte jeweils in die F.Gleichung ein.


Ich verrate aber schonmal soviel, dass für diese Punkte nur die Funktionsgleichung \(y=f(x)=0\) existiert, unter der Vorraussetzung, dass der Polynomgrad \(n \leq 2\) beträgt.

geantwortet vor 6 Monate
m
maccheroni_konstante, verified
Sonstiger Berufsstatus, Punkte: 12571
 

Danke, aber wenn ich davon ausgehen würde, dass es nur die einzigen Nullpunkte des Graphen sind, wären die ja wenn ich die durch den SAtz vom Nullprodukt bearbeiten würde eine Funktion 3 Grades. Aber wie bekomme ich am Ende a raus, wenn ich dann nur diese Punkte habe, also diese 3 Nullstellen, ist das überhaupt möglich? Oder bräuchte ich dann noch einen weiteren Punkt, der keine Nullstelle ist um a herauszufinden?

  -   kiro9, kommentiert vor 6 Monate

Weil in der Aufgabe steht, dass sind die Nullstellen einer Funktion zudem die einzigen 3 Nullstellen der Funktion: 


(x-2)(x-3)(x-0) bestimem den Funktionsterm

  -   kiro9, kommentiert vor 6 Monate

Auch wenn ich keine Antwort geschrieben habe, das habe ich oben in die Kommentare geschrieben, was du rauskriegst, wenn du davon ausgehst, dass eine Funktion dritten Grades durch die drei Punkte geht.

  -   jojoliese, kommentiert vor 6 Monate

Achso, danke erst jetzt gesehen.

  -   kiro9, kommentiert vor 6 Monate

Es kann nicht sein, dass man euch die drei Nullstellen gibt und eine eindeutige Funktionsgleichung dritten Grades erwartet. Du kannst die ja in Richtung der y-Achse beliebig strecken oder zusammenstauchen und sie geht trotzdem durch die Punkte

  -   jojoliese, kommentiert vor 6 Monate
Kommentar schreiben Diese Antwort melden