Wahrscheinlichkeitsrechnung mit dem Taschenrechner


0

Wie berechnet man solche Aufgaben, in denen p gegeben ist? Ich weiß, wie ich das mit dem Summenzeichen mache aber bei kumulierter Binomialverteilung kann man schlecht per Hand berechnen. Also meine eigentliche Frage: Wie gibt man solche Aufgaben im Taschenrechner CAS an? Mit solve(binomcdf(n,p,untere Grenze,obere Grenze)=0,15) funktioniert das nicht. Mit dem Summenzechen funktioniert solve Funktion auch nicht.

 

gefragt vor 6 Monate
s
sv,
Punkte: 50
 
Kommentar schreiben Diese Frage melden
1 Antwort
0

Hallo,

bei a) kannst du aus dem Text entnehmen, dass \(n=30\) und \(p=0.25\) ist. 

Eine Möglichkeit bei geringem Stichprobenumfang wäre, zu raten. Der Erwartungswert liegt bei 7 richtigen Fragen. Man könnte z.B. \(k \geq 9,\: k\geq 11,\: k \geq 13\) berechnen und schauen.

Eine andere wäre über die Approximation mithilfe der Normalverteilung. Dies wird bei geringem Stichprobenumfang allerdings recht ungenau, da der zentrale GWS von Moivre-Laplace nicht erfüllt ist. 

Wenn direkt mit der Binomialverteilung gearbeitet wird, kann die Tabelle für die kumulierten Wahrscheinlichkeiten zu Hilfe genommen werden. Hier ist \(P(X \geq k) < 0.15\) gesucht. Dies müsste man zu \(1-P(X<k) > 0.85\) bzw. \(1-P(X \leq k-1) > 0.85\)  umgewandelt werden. Schauen wir in der mittleren Spalte der generierten Tabelle nach:

so sehen wir, dass \(k=10\) der kleinste Wert ist, der die Bedingung \(> 0.85\) erfüllt. Zu diesem Wert addieren wir 1.

Es müssen also mind. 11 Fragen korrekt beantwortet werden, damit die WSK zu raten kleiner als 15 Prozent beträgt.

\(P(X \geq 10) \approx 19.7\% ,\: P(X\geq 11) \approx 10.58\%\)

geantwortet vor 6 Monate
m
maccheroni_konstante, verified
Sonstiger Berufsstatus, Punkte: 13156
 
Kommentar schreiben Diese Antwort melden