Matrizenmultiplikation


0

Ich schreibe Freitag MatheLK Abi und bin meine Vorklausur nochmal durchgegangen und dabei ist mir aufgefallen, dass ich noch immer keinen Schimmer habe wie Aufgabe 3 d) (2) funktioniert. Hoffe die Bilder im Anhang erscheinen. Wäre toll, wenn mir jemand helfen könnte.

 

gefragt vor 5 Monate, 3 Wochen
m
moritz1211,
Schüler, Punkte: 30
 
Kommentar schreiben Diese Frage melden
1 Antwort
1

Hallo,

\( x_4 \) steht für die Nicht-Nutzer. Nun sollen alle Nicht-Nutzer nach C wandern. Der Rest soll unverändert bleiben. Das macht die Matrix

\( \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \)

denn es gilt

\( \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 + x_4 \\ 0 \end{pmatrix} \)

Somit sind alle die bereits einen Plan gebucht haben bei ihrem Plan geblieben und alle Nicht-Nutzer sind nach C gegangen.

Grüße Christian

geantwortet vor 5 Monate, 3 Wochen
christian strack, verified
Sonstiger Berufsstatus, Punkte: 14883
 

Danke Christian,
das hat mir schon mal ein ganzes Stück weiter geholfen, aber kannst du mir evtl. noch erklären weshalb man in d) (2) Matrix A*M multiplizieren muss? Das verstehe ich noch nicht ganz.
Beste Grüße Moritz
  -   moritz1211, kommentiert vor 5 Monate, 2 Wochen

Hmm ist \( A \cdot M \) die Lösung der zweiten Aufgabe? Ich würde eher sagen es ist umgekehrt.

Die Matrix M beschreibt den Buchungsprozess, und die Matrix A schickt die restlichen Nicht-Nutzer nach C.
Nach dem Buchungsprozess sollen alle die noch nichts gebucht haben durch den Rabatt gelogt werden, Da dieses locken nur Sinn macht wenn sich die anderen bis dahin schon entschieden haben, muss der normale Buchungsprozess ja vorher stattfinden, also

\( M \cdot A \)
  -   christian strack, verified kommentiert vor 5 Monate, 2 Wochen

Das hatte ich in der Klausur auch so gedacht, aber das wurde als falsch angestrichen...
https://youtu.be/5UIzHozX2hw
Leider verstehe ich dieses Video nicht bzw. Weiß nicht, ob es mein problem beantwortet.
Danke für deine Hilfe!!!
  -   moritz1211, kommentiert vor 5 Monate, 2 Wochen

Ach da stand ich selbst auf dem Schlauch.

Die Berechnung der nächsten Verteilung bestimmen wir ja durch eine Multiplikation von Links
\( M \cdot \vec{v} = \vec{v}' \)
Jetzt haben wir den Verteilungsvektor nachdem sich die Leute für ein Angebot entschieden haben.
Jetzt sollen alle Nicht-Nutzer nach C wandern, also wenden wir wieder von links unsere Matrix S an.
\( S \cdot \vec{v}' = \vec{v}'' \)
\( \vec{v}'' \) steht jetzt für die Verteilung nach dem wirklich alle ein Angebot gebucht haben. Wenn wir das nun als Multiplikation der beiden Matrizen schreiben, erhalten wir
\( S \cdot \vec{v}' = S \cdot M \cdot \vec{v} = \vec{v}'' \)

Ich bin auch in die Falle getappt wie beim schreiben das ganze von Links nach Rechts aufzubauen aber es wirkt natürlich zuerst die Matrix (der Prozess) auf den Verteilungsvektor die direkt daneben ist.
  -   christian strack, verified kommentiert vor 5 Monate, 2 Wochen
Kommentar schreiben Diese Antwort melden