Skalarprodukt- Vektor multiplikation


0

Hallo

In der Schule wird gesagt, das Skalarprodukt, ist grafisch gesehen der Schatten des einen Vektors auf den anderen. Wie soll man das interpretiern

2 Vektoren : (12/0) und (7/5) werden skalar multipliziert

das ergibt dann 84 

Wie kann aber der Schatten 84 sein? die Vektoren sind doch kürzer als 84

Ich denke beim Skalarprodukt eher an Winkelbestimmung! Der Schattenwurf ist mir unklar

Danke an Alle!!

 

gefragt vor 5 Monate, 3 Wochen
denno345,
Schüler, Punkte: 85
 
Kommentar schreiben Diese Frage melden
1 Antwort
0

Hallo,

das Skalarprodukt steht nicht direkt für den Schatten. Man holt sich diese Vorstellung nur gerne zur Hilfe, da die Projektion( der Schattenwurf) mit einfließen. Dadurch ergibt das Skalarprodukt Null wenn die beiden Vektoren senkrecht sind, da zwei senkrechte Vektoren keinen Schatten auf den jeweils anderen Vektor werfen.

Der Wert des Skalarproduktes ist das Produkt der Längen multipliziert mit dem eingeschlossenen Innenwinkel (dem Kosinus des Winkels). 

\( \vec{a} \cdot \vec{b} = \vert \vec{a} \vert \vert \vec{b} \vert \cos(\varphi ) = ab \cos(\varphi ) \)

Wenn man sich das ganze geometrisch einmal anguckt, findet man den Zusammenhang 

\( \vec{a} \cdot \vec{b} = ab_a \), 

dabei ist \( b_a \) die Projektion von \( \vec{b} \) auf \( \vec{a} \) und wird berechnet über \( b_a = b \cdot \cos(\varphi) \)

Ich hoffe das war jetzt nicht zu viel auf einmal. Um es zusammenzufassen. Du hast recht die Projektion (der Schatten) ist nicht der Wert den man erhält, aber die Projektion hat direkt Einfluss auf den Wert des Skalarproduktes.

Grüße Christian

geantwortet vor 5 Monate, 3 Wochen
christian strack, verified
Sonstiger Berufsstatus, Punkte: 14903
 

Danke, warum bleiben solche Infos in der Schule immer ungelehrt!

Aber dafür ist ja diese geniale Seite hier!
  -   denno345, kommentiert vor 5 Monate, 3 Wochen

Sehr gerne :) Das ist leider oft ein Problem. Umso mehr freut es uns das wir hier etwas den Matheschmerz lindern können. Verständnis ist eben wichtiger als auswendig Lernen. ;)

Vielleicht noch interessant. Sollte der Vektor auf den projiziert wird ( bei mir war das der Vektor a) die Länge 1 haben, so erhalten wir aus dem Skalarprodukt direkt die Projektion .

Wenn für dich die Frage geklärt ist, schließe sie bitte indem du auf das Häkchen links unter dem Vote klickst :)
  -   christian strack, verified kommentiert vor 5 Monate, 3 Wochen
Kommentar schreiben Diese Antwort melden