Komplexe Zahlen


0

z=((1+3i)(2-i)/e^-i5/6pi × e^ i pi/2)^3

 

Hallo,

Bei dieser Komplexen Zahl muss ich den Real und Imaginärteil bestimmen.

Weiß aber nicht wie vorgehen muss.

Danke im Vorraus.

 

 

gefragt vor 4 Monate, 3 Wochen
v
vaynax,
Student, Punkte: 10
 

Du solltest Klammern um Exponent / Brüche setzen. So ist nicht klar, was gemeint ist.   -   maccheroni_konstante, verified kommentiert vor 4 Monate, 3 Wochen

Bitte Formeleditor verwenden!   -   yg98, kommentiert vor 4 Monate, 3 Wochen
Kommentar schreiben Diese Frage melden
1 Antwort
0

Hallo,

wie die Kommentare schon andeuten ist es schwierig deinen Ausdruck richtig zu lesen. Allerdings würde ich trotzdem folgendermaßen vorgehen.

Die kartesische Form (a+ib) hat den Vorteil das in dieser Form die Addition und Subtraktion sehr einfach ist. Hingegen hat die Eulersche Form ( \( re^{i \varphi} \) ) den Vorteil das mit dieser die Multiplikation bzw Division und damit auch das Potenzieren sehr einfach fällt. 

Da wir hier ein Produkt vorliegen haben, sollten wir also erstmal auch den letzten kartesischen Ausdruck in die Eulerfom bringen. Dann kannst du mit Hilfe der Potenzgesetze ganz leicht den Ausdruck zusammenfassen. 
Am Ende bringst du den Ausdruck wieder in kartesische Form, um den Realteil und Imaginärteil zu bestimmen.

Grüße Christian

geantwortet vor 4 Monate, 3 Wochen
christian strack, verified
Sonstiger Berufsstatus, Punkte: 14903
 
Kommentar schreiben Diese Antwort melden