Gradientenfeld


0

Kann mir jemand sagen, wie man anhand eines solchen Gradientenfeldes mit Niveaulinien auf Extremstellen schließen kann? N2 würde ich aufgrund der Gradienten im Umfeld als Sattelpunkt sehen. Bei N1 wär ich mir nicht sicher, ob es ein lok. Minimum oder Maximum ist..

 

gefragt vor 4 Monate, 4 Wochen
a
adrianmeffert,
Punkte: 10
 
Kommentar schreiben Diese Frage melden
1 Antwort
0

Hallo,

jeder dieser Pfeile steht für den Gradienten in diesem Punkt. Der Gradient zeigt immer in die Richtung des stärksten Anstiegs. 

Die Länge des Pfeils steht für die stärke des Anstiegs. 

Bei \( N_2 \) hast du recht. Wir haben Pfeile die auf \( N_2 \) zeigen und Pfeile die davon wegzeigen. Also gibt es in der Umgebung Punkte die höher und tiefer liegen, also Sattelpunkt.

Ich würde sagen \( N_1 \) ist ein Tiefpunkt. Es zeigen alle umliegenden Pfeile von \( N_1 \) weg, also egal in welche Richtung wir gehen, die Steigung nimmt zu. 

\( N_3 \) bin ich mir auch nicht 100% sicher. Ich denke mal da \( N_1 \) ein Tiefpunkt ist, hat die rote Linie die größte Höhe und somit wird das bezogen auf unsere Funktion ein Hochpunkt sein. Was meinst du?

Grüße Christian

 

geantwortet vor 4 Monate, 4 Wochen
christian strack, verified
Sonstiger Berufsstatus, Punkte: 15068
 

Erstmal Danke für die Antwort :)
Da der Gradient in N3 nicht 0 ist, dachte ich, dass es dadurch ausgeschlossen ist, dass ein Extremum vorleigt..
  -   adrianmeffert, kommentiert vor 4 Monate, 3 Wochen

Hmm ich muss ehrlich sagen ich habe noch nicht vieler solcher Bilder untersucht. Deshalb bin ich mir auch nicht 100% sicher. Ich dachte jeder dieser drei Punkte wäre ein kritischer Punkt, deshalb war der Hochpunkt am naheliegensten.
Aber wenn es kein kritischer Punkt ist, würde ich eigentlich auch eher sagen das es kein Extremum ist.
  -   christian strack, verified kommentiert vor 4 Monate, 3 Wochen
Kommentar schreiben Diese Antwort melden