Binomialverteilung Aufgabe


0

Es geht um die Berechnung der Wahrscheinlichkeit, bei einem multiplechoice test mit je 4 antworten pro frage mindestens 6 richtig zu beantworten. Dabei sind immer 3 antworten je frage richtig und alle von denen müssen richtig angekreuzt sein, damit die frage als richtig beantwortet gilt.

Leider habe ich keine Ahnung, wie die Formel aussehen soll. Kann mir jemand auf die Sprünge helfen ?

 

gefragt vor 4 Monate
g
gordon gekko,
Student, Punkte: 10
 

Wie viele Fragen hat der Test insgesamt?   -   maccheroni_konstante, verified kommentiert vor 4 Monate

8, sorry, habe ich vergessen zu erwähnen   -   gordon gekko, kommentiert vor 4 Monate
Kommentar schreiben Diese Frage melden
2 Antworten
1

Sei \(X\) die Anzahl korrekt beantworteter Fragen. Ferner gilt \(X \sim B(8, 0.75)\).

Gesucht ist \(P(X \geq 6)=\displaystyle\sum\limits_{i=6}^8\displaystyle\binom{8}{i}\cdot\left (\dfrac{1}{4} \right )^i\cdot \left (\dfrac{3}{4} \right )^{8-i}\)

geantwortet vor 4 Monate
m
maccheroni_konstante, verified
Sonstiger Berufsstatus, Punkte: 13156
 

Wieso denn 1/64? :)   -   endlich verständlich, verified kommentiert vor 4 Monate

p=3/4, stimmt.   -   maccheroni_konstante, verified kommentiert vor 4 Monate

Halt. Du hast vorne und hinten vertauscht oder? :)   -   endlich verständlich, verified kommentiert vor 4 Monate
Kommentar schreiben Diese Antwort melden
1

Also weil es so viel Verwirrung gab, versuche ich es jetzt nochmal kompakt und fehlerfrei :D

3 von 4 richtigen Antworten auf eine Frage zu finden muss äquivalent dazu sein, 1 von 4 falschen Antworten auf die Frage zu finden. Wenn du die falsche Antwort gefunden hast, dann kannst du die Frage RICHTIG beantworten. Das hat möglicherweise zu Verwirrung geführt. Du kreuzt nämlich einfach alle anderen an!

Jetzt willst du MINDESTENS 6 von 8 Fragen richtig beantworten, also 6, 7 oder 8.

Angenommen du willst die ersten 6 Fragen richtig beantworten, dann musst du 6 mal richtig liegen und 2 mal falsch, also in Formeln \(\frac{1}{4}^6\cdot\frac{3}{4}^2\). Du kannst aber auch die letzten 6 richtig beantworten oder die ersten 2 und die letzten 4, ... Dafür gibt es insgesamt \(\binom{8}{6}\) Möglichkeiten. Du wählst ja 6 aus 8. Somit kommt eine Wahrscheinlichkeit von \(\frac{252}{65536}\) heraus GENAU 6 Fragen richtig zu beantworten.

Für 7 Fragen läuft es analog. Es ist \(\frac{1}{4}^7\cdot\frac{3}{4}^1\) für die ersten 7 und es gibt \(\binom{8}{7}\) Möglichkeiten die 7 Fragen auszuwählen.

Für 8 Fragen hast du nur noch eine Möglichkeit mit \(\frac{1}{4}^8\)

Insgesamt hast du also: \(\frac{(252+24+1)}{65536}\) als Wahrscheinlichkeit raus. Das Gleiche erhälst du mit der Formel:

$$P(X\geq6)=\sum_{k=6}^8\binom{8}{k}\cdot\biggl(\frac{1}{4}\biggr)^k\cdot\biggl(\frac{3}{4}\biggr)^{8-k}$$

Als Prozent sind es: \(0,4227\)%

Ich hoffe jetzt passt alles! :)

geantwortet vor 4 Monate
endlich verständlich, verified
Student, Punkte: 1160
 

"Wenn du die falsche Antwort gefunden hast"
Ich denke, die Person rät.
  -   maccheroni_konstante, verified kommentiert vor 4 Monate
Kommentar schreiben Diese Antwort melden