Quadratische Ergänzung


0
Kann mir bitte jemand helfen, diese qudratiche Gleichung von der Normal- in die Scheitelpunktform umzuschreiben? Ich möchte nämlich den Scheitelpunkt aus der SPF ablesen können. f_{t}(x)=x^{2}+t*x+2

 

gefragt vor 2 Wochen, 1 Tag
f
fasn,
Punkte: 10
 
Kommentar schreiben Diese Frage melden
2 Antworten
1

Hallo,

\( x^2 + tx + 2 \)

Nun gilt \( (a+b)^2 = a^2 + 2ab + b^2 \), also nehmen wir den Vorfaktor von \( x \) und halbieren ihn. Das ist dann unser \( b \)

\( (x + \frac t 2)^2 + c \) 

Nun können wir die Klammer ausrechnen und gucken was das \( c \) sein muss

\( \Rightarrow x^2 + tx + \left( \frac t 2 \right)^2  + c = x^2 + tx + 2 \quad \vert -(x^2+tx) \\ \Rightarrow  \frac {t^2} 4   + c = 2 \quad \vert - \frac {t^2} 4  \\ \Rightarrow c = 2 - \frac {t^2} 4 \)

Jetzt da wir \( c \) wissen, können wir die Scheitelpunktform aufstellen

\( \Rightarrow f(x) = (x + \frac t 2)^2 +(2- \frac {t^2} 4) \)

Grüße Christian

geantwortet vor 2 Wochen, 1 Tag
christian strack, verified
Sonstiger Berufsstatus, Punkte: 14093
 

Hallo! Danke für die Antwort. Leider hab ich echt Probleme diese Rechnung nachzuvollziehen. Wieso schreibt man denn +c? Beim ersten Pfeil: Wieso kommt da auf einmal wieder die 2 hin, denn (t/2)^2 sind nicht 2 sondern 0,25t^2. und woher kommt dann plötzlich beim 2. Pfeil die 0,25t^2 wenn da vorher eine 2 stand beim ersten Pfeil.   -   fasn, kommentiert vor 2 Wochen, 1 Tag

Die allgemeine Scheitelpunktform ist
\( f(x) = (x+d)^2 + c \)
Ich habe damit angefangen zu überprüfen was in die Klammer muss, also was \( d \) ist.
Das scheint ja noch verständlich zu sein.
Nun fehlt uns noch das \( c \). Ich habe es jetzt mal rein formel aufgeschrieben, indem ich aufgeschrieben habe was wir schon von der Scheitelform wissen (nämlich \( d= \frac t 2 \)) und habe das mit unserer ursprünglichen Funktion gleichgesetzt, denn beide Ausdrücke beschreiben die selbe Funktion, müssen also gleich sein.
Daraus lässt sich nun entspannt \( c \) durch auflösen der Gleichung berechnen.

Es gibt aber noch eine andere Art sich das zu überlegen (auch wenn es das selbe Prinzip ist)
Wir fangen wieder an uns zu überlegen wie die Klammer aussieht (wenn das doch nicht ganz verständlich ist wie ich auf \( d= \frac t 2 \) komme sag bescheid).
Nachdem wir das herausgefunden haben, berechnen wir \( \left(\frac t 2 \right)^2 = \frac {t^2} 4 = 0,25t^2 \) (also \( b^2 \) von \( (a+b)^2 \)).
Wenn wir uns jetzt unsere Funktionsgleichung angucken
\( f(x) = x^2 + tx + 2 \)
dann brauchen wir noch \( \frac {t^2} 4 \) damit wir aus dem Term \( x^2 + tx + \frac {t^2} 4 \) mit Hilfe der binomischen Formel \( (x+ \frac t 2)^2 \) erhalten.
Jetzt nutzen wir einen Trick den man relativ häufig in der Mathematik benutzt und zwar addieren wir eine Null. Das dürfen wir weil \( +0 \) nichts am Wert verändert, also
\( f(x) = x^2 + tx + 2 + 0 \)
Jetzt gilt \( \frac {t^2} 4 - \frac {t^2} 4 = 0 \), also können wir auch schreiben
\(f(x) = x^2 + tx + 2 + \frac {t^2} 4 - \frac {t^2} 4 = x^2 + tx + \frac {t^2} 4 + 2 - \frac {t^2} 4 = (x- \frac t 2)^2 + 2 - \frac {t^2} 4 \)
Ist es jetzt verständlicher?

Grüße Christian
  -   christian strack, verified kommentiert vor 2 Wochen, 1 Tag

Ahhhh, jetzt hab ich es. Danke für die Hilfe! :)   -   fasn, kommentiert vor 2 Wochen, 1 Tag
Kommentar schreiben Diese Antwort melden
0

https://www.youtube.com/watch?v=JLADCKXbeNE

Oldies but Goldies

geantwortet vor 2 Wochen, 1 Tag
d
der heiner,
Sonstiger Berufsstatus, Punkte: 65
 
Kommentar schreiben Diese Antwort melden