Werte von Fourierreihen


0

Also die Frage in meinem Studienheft ist folgende

Bestimmen Sie die Fourierreihe zu der periodischen Funktion f(x) im Grundintervall 0 kleinergleich x kleiner 2 Pi

f(x) = ( x falls 0 kleinergleich x kleiner Pi        und       0 falls Pi kleinergleich x kleiner 2 Pi

Geben Sie den Wert der Fourierreihe an den Stellen x1 = 0 und x2 = Pi an.

So mein Problem mit dieser Aufgabe ist, das ich den Beispielen im Studienheft diesen Fall nicht finde. Da werden die Koeffizienten berechnet, Funktionen werden als gerade oder ungerade bezeichnet usw. aber eben keine Aufgabe mit dem Inhalt, bitte geben Sie den Wert an den Stellen ... an. Da meine Suchanfragen auch nicht wirklich ein befriedigendes Ergebnis zutage fördern, hoffe ich das einer von euch weiss was damit gemeint ist. Ich brauch eigentlich nur ein Beispiel wo dieser Fall vorgeführt wird, alles andere erarbeite ich dann selbst. Werde jetzt auch gleich nochmal den Papula zu Rate ziehen.

Vielen Dank im Voraus

Jan

 

gefragt vor 2 Monate
j
janleder,
Student, Punkte: 80
 


Wie wäre es wenn Du zunächst mal die Fourierreihe bestimmst und dann den Rest der Aufgabe mit dem gerade erlangten Vorwissen löst? Zur Not, oder als Denkhilfe, Wolframalpha benutzen.
  -   einmalmathe, verified kommentiert vor 2 Monate
Kommentar schreiben Diese Frage melden
1 Antwort
2

Mit diesem Video sollte es klappen: https://www.youtube.com/watch?v=j8O8MYYplKg

Dein Fall ist sogar noch um einiges einfacher als der dort gezeigte...

EDIT: MUSSTE NOCH ETWAS KORRIGIEREN...

Es ist hier so, dass die Funktion weder gerade noch ungerade ist.

Die Funktion muss durch zwei Teilfunktionen dargestellt werden.

Im Intervall `0` bis `pi` gilt: `g(x)=(2pi)/T*t`

Im Intervall `pi` bis `2pi` gilt: `h(x)=0`

`a_{0}=2/T*pi*T/2*1/2=1/2pi`
`a_{k}=1/(pi*k^2)*cos(pi*k)-1/(pi*k^2)+1/k*sin(pi*k)`
`b_{k}=1/(pi*k^2)*sin(pi*k)-1/k*cos(pi*k)`

(Vereinfachen kannst du noch selbst, die ersten Glieder der Reihe ergeben sich damit zu:)

`1/4*pi-2/pi*cos(t)+sin(t)-1/2*sin(2t)-2/(9*pi)*cos(3t)+1/3*sin(3t)-1/4*sin(4t)-2/(25*pi)*cos(5t)+1/5*sin(5t)-1/6*sin(6t)-2/(49*pi)*cos(7t)+1/7*sin(7t)-1/8*sin(8t)`

P.S. Keine Garantie auf Freiheit von Flüchtigkeitsfehlern...

Jetzt brauchst du den Grenzwert der Summenschreibweise (unendliche Summe) für x=0 und x=`pi`...

Die Werte der Fourrierreihe sollten 0 für  x=0 und `pi/2` für x=`pi` sein!

Es sollte etwa so aussehen...

geantwortet vor 2 Monate
vt5, verified
Student, Punkte: 3365
 

So kann man es z.B. in Geo-Gebra eingeben und a `infty` annähern.
`1 / 4 π - 2 / π Summe(cos(2k x + x) / (2k + 1)^2, k, 0, a) - Summe(cos(k π) sin(k x) 1 / k, k, 1, 2a)`
  -   vt5, verified kommentiert vor 2 Monate


Hi, es macht immer noch nicht Klick bei mir, ich habe jetzt erst vor kurzem geschnallt warum der Ausdruck mit dem cos(nx) zu (-1)hoch n wird - Eulers Formel - ich habe zusätzlich auch die Lösung von dem Tutor der unsere Einsendeaufgaben bearbeitet bekommen. Da ploppen eigentlich nur noch mehr ???? auf. Aber vielen Dank für die Mühe. Letztendlich wird es mich halt in der Klausur am Samstag von einer 2 auf eine 3 stufen, schade drum ich hätte das Thema gerne kapiert. Ist ja eigentlich ganz cool, was Fourier sich da ausgedacht hat. Ich habe meinen ersten Post nochmal um die Originalfrage und den Antworttext erweitert, ich verstehe leider auch nicht wie wir zu dem Ausdruck mit cos(2i+1)x/(2i+1)Quadrat (so steht es in meinem Lehrbuch) kommen. Das der Ausdruck (2i+1) für das n oder k oder wie auch immer eingesetzt wird, ist ja alles noch nachvollziehbar aber woher kommt der und wieso ist der in der Lösung mit (2n-1) angegeben und warum ist in der Lösung der Ausdruck Pi Quadrat/8 auf einmal da . Das sind leider zuviele Fragen, ich hätte mich mal früher mit dem Thema auseinandersetzen sollen, dann wäre Herr Jung vielleicht noch dazu gekommen ein Video für mich zu machen. Aber das war irgendwie gerade alles zuviel, Quereinstieg in den Lehrerberuf (NaWi und Mathe) und gleichzeitig noch Klausurvorbereitung (chemische Verfahrenstechnik im Fernstudium) , da muss ich halt Abstriche machen. Aber wie gesagt trotzdem danke ich euch allen, sobald ich ein bißchen aus dem gröbsten heraus bin würde ich auch gerne Fragen beantworten. Mach ich ja sowieso schon den ganzen Tag. Grüße Jan
  -   janleder, kommentiert vor 1 Monat, 2 Wochen

Eulers Formel muss zumindest für diese Aufgabe aber gar nicht wirklich gekannt werden.

Außerdem ist mein Ergebnis (mit bk - vgl. GeoGebra Version) sicher nicht falsch, wenn auch vielleicht nicht in der euch gewohnten Schreibweise. Das habe ich gerade extra noch mal überprüft.

Anscheinend hat dein Tutor nicht erkennen (wollen) können, was du gerade richtig beschrieben hast (cos(k*pi) wird zu einem (-1)^k - Term). Wenn du also meine Lösung richtig verwendet hast (auch die Ergebnisse für x=0 und x=pi stimmen ja), dürftest du (bis auf möglicherweise andere Formalitäten) keine Fehler angerechnet bekommen.
In meinem Fall hättest du a nur noch gegen unedlich laufen lassen müssen.

Wenn noch Zeit (bis Samstag) ist, kann ich dir gerne noch weiteres erklären, aber dafür müsstest du halt möglichst zeitnah mitarbeiten.

Zunächst einmal eine Frage: Das Aufstellen der Fourierreihe hast du jetzt soweit verstanden?
Zumindest bis zu den Ergebnissen die ich angegeben habe? Alles was danach kommt sind nur noch "Vereinfachungen" die die eigentliche Lösung nicht mehr ändern. Wenn du so weit wie ich angegeben habe kommst, gibt es zumindest Teilpunkte (würde ich erwarten).

Es gibt tatsächlich viele verschiedene Schreibweisen, aber bedenke z. B. wenn es um unendlich Summen geht, sind die Ausdrücke 2n-1 und 2n+1 (bis auf den Starwerte) gleichbedeutend.

Dann sehe ich, dass du noch Fragen zu den Ergebnissen der Summen an den Stellen x=0 bzw. x=pi hast. Wenn ich das richtig verstehe, und du willst, bin ich gerne bereit es nochmal ausführlicher zu machen.
  -   vt5, verified kommentiert vor 1 Monat, 2 Wochen
Kommentar schreiben Diese Antwort melden