Kann mir jemand beim lösen dieser Aufgabe helfen? Danke!


0

 

gefragt vor 1 Monat, 4 Wochen
f
flo395,
Student, Punkte: 10
 
Kommentar schreiben Diese Frage melden
1 Antwort
1

Woran scheiterts?

\(M_1(-1|9|8),\: M_2(-4|6|8),\: M_3(-1|6|11)\)

Z.B. mithilfe des Skalarprodukts bildest du den Schnittwinkel zwischen dem NV der Ebene und dem jeweiligen Verbindungsvektor zwischen A und den Mittelpunkten.

Oder via \(\varphi = \arcsin \dfrac{|\vec{n} \circ \overrightarrow{AM_\lambda}|}{|\vec{n}|\cdot |\overrightarrow{AM_\lambda}|}\).

geantwortet vor 1 Monat, 4 Wochen
m
maccheroni_konstante, verified
Sonstiger Berufsstatus, Punkte: 13156
 

Wie komme ich auf den Ortsvektor D, um die Ebene bestimmen zu können?   -   flo395, kommentiert vor 1 Monat, 4 Wochen

Du kannst den Ortsvektor einer der Punkte benutzen.   -   maccheroni_konstante, verified kommentiert vor 1 Monat, 4 Wochen

Ich habe B als Ortsvektor. Wie komme ich dann auf den Richtungsvektor zwischen BD?   -   flo395, kommentiert vor 1 Monat, 4 Wochen

Ortsvektor von D minus Ortsvektor von B   -   maccheroni_konstante, verified kommentiert vor 1 Monat, 4 Wochen

Ich habe aber den Ortsvektor D nicht.   -   flo395, kommentiert vor 1 Monat, 4 Wochen

Dann finde ihn heraus. A und B hast du gegeben; der Würfel verläuft parallel zu den Koordinatenachsen.   -   maccheroni_konstante, verified kommentiert vor 1 Monat, 4 Wochen

Habe ich jetzt. Danke für die Hilfe! :-)   -   flo395, kommentiert vor 1 Monat, 4 Wochen
Kommentar schreiben Diese Antwort melden