Summen berechnen


1
Ich verstehe Aufgabe 1 g, und j überhaupt nicht. Da sitze ich schon Stunden dran. Kann mir bitte jemand helfen?

 

gefragt vor 3 Wochen, 5 Tage
sandra.kowalsky@gmx.de,
Student, Punkte: 25
 
Kommentar schreiben Diese Frage melden
1 Antwort
1

g) Die Summe \(\displaystyle\sum\limits_{i=1}^n i^2\) ist ja nichts anderes als \(1^2 + 2^2 +3^2 +4^2 +... +n^2\).

Subtrahiert man davon nun die zweite Summe, verbleiben lediglich die Elemente \(1^2\) und \(n^2\).

Sprich \(\displaystyle\sum\limits_{i=1}^n i^2 - \displaystyle\sum\limits_{i=2}^{n-1} i^2 \\
= [1^2 + 2^2 + 3^2 + \, ...\, + (n-2)^2 + (n-1)^2 + n^2] -[2^2 + 3^2 + \, ...\, + (n-2)^2 + (n-1)^2] \\
= 1^2 + n^2 \\
= 1+n^2\)

j)

Du könntest zuerst den Faktor 4 vor die Doppelsumme ziehen.

\(\displaystyle\sum\limits_{i=0}^3 \displaystyle\sum\limits_{j=0}^4 4ij = 4 \displaystyle\sum\limits_{i=0}^3 \displaystyle\sum\limits_{j=0}^4 ij\)

Nun kannst zuerst die zweite Summe für i=0 evaluieren (sprich rechne bei \(i\cdot j\) jeweils mit \(i=0\)), dann die zweite Summe mit i=1, usw.:

i = 0: 0
i = 1: \(\displaystyle\sum\limits_{j=0}^4 1\cdot j = 1\cdot 1 + 1\cdot 2+ 1\cdot 3+ 1\cdot 4 = 1(1+2+3+4) = 10\)
i = 2: \(\displaystyle\sum\limits_{j=0}^4 2\cdot j = 2\cdot 1 + 2\cdot 2+ 2\cdot 3+ 2\cdot 4 = 2(1+2+3+4)= 20\)

i = 3: \(\displaystyle\sum\limits_{j=0}^4 3\cdot j = 3\cdot 1 + 3\cdot 2+ 3\cdot 3+ 3\cdot 4 = 3(1+2+3+4)= 30\)

Somit lautet das Ergebnis \(4\displaystyle\sum\limits_{i=0}^3 \displaystyle\sum\limits_{j=0}^4 ij = 4\cdot (10+20+30) = 4\cdot 60 = 240\)

geantwortet vor 3 Wochen, 5 Tage
m
maccheroni_konstante, verified
Sonstiger Berufsstatus, Punkte: 13136
 

Wie kommst du auf 4*60 bei dem Ergebnis von j?   -   sandra.kowalsky@gmx.de, kommentiert vor 3 Wochen, 5 Tage

Wie kommst du auf 4*60 bei dem Ergebnis von j?   -   sandra.kowalsky@gmx.de, kommentiert vor 3 Wochen, 5 Tage

Da solltest du getestet werden ;).
Die Zeile "i = 4" ist zu viel. Wir summieren ja nur von i = 0 bis i = 3. Entsprechend muss in der finalen Zeile auch das +40 entfernt werden. Das Endergebnis passt aber zur eigentlichen Summe.
  -   orthando, verified kommentiert vor 3 Wochen, 5 Tage

Ja, das ist mir auch gerade aufgefallen.   -   maccheroni_konstante, verified kommentiert vor 3 Wochen, 5 Tage
Kommentar schreiben Diese Antwort melden